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2.9 An Application to Markov Chains

Many natural phenomena progress through various stages and can be in a variety of states at each stage.
For example, the weather in a given city progresses day by day and, on any given day, may be sunny or
rainy. Here the states are “sun” and “rain,” and the weather progresses from one state to another in daily
stages. Another example might be a football team: The stages of its evolution are the games it plays, and
the possible states are “win,” “draw,” and “loss.”

The general setup is as follows: A real conceptual “system” is run generating a sequence of outcomes.
The system evolves through a series of “stages,” and at any stage it can be in any one of a finite number of
“states.” At any given stage, the state to which it will go at the next stage depends on the past and present
history of the system—that is, on the sequence of states it has occupied to date.

Definition 2.15 Markov Chain

A Markov chain is such an evolving system wherein the state to which it will go next depends
only on its present state and does not depend on the earlier history of the system.19

Even in the case of a Markov chain, the state the system will occupy at any stage is determined only
in terms of probabilities. In other words, chance plays a role. For example, if a football team wins a
particular game, we do not know whether it will win, draw, or lose the next game. On the other hand, we
may know that the team tends to persist in winning streaks; for example, if it wins one game it may win
the next game 1

2 of the time, lose 4
10 of the time, and draw 1

10 of the time. These fractions are called the
probabilities of these various possibilities. Similarly, if the team loses, it may lose the next game with
probability 1

2 (that is, half the time), win with probability 1
4 , and draw with probability 1

4 . The probabilities
of the various outcomes after a drawn game will also be known.

We shall treat probabilities informally here: The probability that a given event will occur is the long-

run proportion of the time that the event does indeed occur. Hence, all probabilities are numbers between
0 and 1. A probability of 0 means the event is impossible and never occurs; events with probability 1 are
certain to occur.

If a Markov chain is in a particular state, the probabilities that it goes to the various states at the next
stage of its evolution are called the transition probabilities for the chain, and they are assumed to be
known quantities. To motivate the general conditions that follow, consider the following simple example.
Here the system is a man, the stages are his successive lunches, and the states are the two restaurants he
chooses.

Example 2.9.1

A man always eats lunch at one of two restaurants, A and B. He never eats at A twice in a row.
However, if he eats at B, he is three times as likely to eat at B next time as at A. Initially, he is
equally likely to eat at either restaurant.

a. What is the probability that he eats at A on the third day after the initial one?

19The name honours Andrei Andreyevich Markov (1856–1922) who was a professor at the university in St. Petersburg,
Russia.
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b. What proportion of his lunches does he eat at A?

Solution. The table of transition probabilities follows. The A column indicates that if he eats at A

on one day, he never eats there again on the next day and so is certain to go to B.

Present Lunch

A B
Next A 0 0.25

Lunch B 1 0.75

The B column shows that, if he eats at B on one day, he will eat there on the next day 3
4 of the time

and switches to A only 1
4 of the time.

The restaurant he visits on a given day is not determined. The most that we can expect is to know
the probability that he will visit A or B on that day.

Let sm =


 s

(m)
1

s
(m)
2


 denote the state vector for day m. Here s

(m)
1 denotes the probability that he

eats at A on day m, and s
(m)
2 is the probability that he eats at B on day m. It is convenient to let s0

correspond to the initial day. Because he is equally likely to eat at A or B on that initial day,

s
(0)
1 = 0.5 and s

(0)
2 = 0.5, so s0 =

[
0.5
0.5

]
. Now let

P =

[
0 0.25
1 0.75

]

denote the transition matrix. We claim that the relationship

sm+1 = Psm

holds for all integers m≥ 0. This will be derived later; for now, we use it as follows to successively
compute s1, s2, s3, . . . .

s1 = Ps0 =

[
0 0.25
1 0.75

][
0.5
0.5

]
=

[
0.125
0.875

]

s2 = Ps1 =

[
0 0.25
1 0.75

][
0.125
0.875

]
=

[
0.21875
0.78125

]

s3 = Ps2 =

[
0 0.25
1 0.75

][
0.21875
0.78125

]
=

[
0.1953125
0.8046875

]

Hence, the probability that his third lunch (after the initial one) is at A is approximately 0.195,
whereas the probability that it is at B is 0.805. If we carry these calculations on, the next state
vectors are (to five figures):

s4 =

[
0.20117
0.79883

]
s5 =

[
0.19971
0.80029

]

s6 =

[
0.20007
0.79993

]
s7 =

[
0.19998
0.80002

]

Moreover, as m increases the entries of sm get closer and closer to the corresponding entries of[
0.2
0.8

]
. Hence, in the long run, he eats 20% of his lunches at A and 80% at B.
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Example 2.9.1 incorporates most of the essential features of all Markov
chains. The general model is as follows: The system evolves through
various stages and at each stage can be in exactly one of n distinct states. It
progresses through a sequence of states as time goes on. If a Markov chain
is in state j at a particular stage of its development, the probability pi j that
it goes to state i at the next stage is called the transition probability. The
n× n matrix P =

[
pi j

]
is called the transition matrix for the Markov

chain. The situation is depicted graphically in the diagram.

We make one important assumption about the transition matrix P =[
pi j

]
: It does not depend on which stage the process is in. This assumption

means that the transition probabilities are independent of time—that is,
they do not change as time goes on. It is this assumption that distinguishes
Markov chains in the literature of this subject.

Example 2.9.2

Suppose the transition matrix of a three-state Markov chain is

Present state
1 2 3

P =




p11 p12 p13

p21 p22 p23

p31 p32 p33


 =




0.3 0.1 0.6
0.5 0.9 0.2
0.2 0.0 0.2




1
2
3

Next state

If, for example, the system is in state 2, then column 2 lists the probabilities of where it goes next.
Thus, the probability is p12 = 0.1 that it goes from state 2 to state 1, and the probability is
p22 = 0.9 that it goes from state 2 to state 2. The fact that p32 = 0 means that it is impossible for it
to go from state 2 to state 3 at the next stage.

Consider the jth column of the transition matrix P.



p1 j

p2 j
...

pn j




If the system is in state j at some stage of its evolution, the transition probabilities p1 j, p2 j, . . . , pn j

represent the fraction of the time that the system will move to state 1, state 2, . . . , state n, respectively, at
the next stage. We assume that it has to go to some state at each transition, so the sum of these probabilities
is 1:

p1 j + p2 j + · · ·+ pn j = 1 for each j

Thus, the columns of P all sum to 1 and the entries of P lie between 0 and 1. Hence P is called a stochastic

matrix.

As in Example 2.9.1, we introduce the following notation: Let s
(m)
i denote the probability that the
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system is in state i after m transitions. The n×1 matrices

sm =




s
(m)
1

s
(m)
2
...

s
(m)
n




m = 0, 1, 2, . . .

are called the state vectors for the Markov chain. Note that the sum of the entries of sm must equal 1
because the system must be in some state after m transitions. The matrix s0 is called the initial state

vector for the Markov chain and is given as part of the data of the particular chain. For example, if the

chain has only two states, then an initial vector s0 =

[
1
0

]
means that it started in state 1. If it started in

state 2, the initial vector would be s0 =

[
0
1

]
. If s0 =

[
0.5
0.5

]
, it is equally likely that the system started

in state 1 or in state 2.

Theorem 2.9.1

Let P be the transition matrix for an n-state Markov chain. If sm is the state vector at stage m, then

sm+1 = Psm

for each m = 0, 1, 2, . . . .

Heuristic Proof. Suppose that the Markov chain has been run N times, each time starting with the same
initial state vector. Recall that pi j is the proportion of the time the system goes from state j at some stage

to state i at the next stage, whereas s
(m)
i is the proportion of the time it is in state i at stage m. Hence

sm+1
i N

is (approximately) the number of times the system is in state i at stage m+1. We are going to calculate
this number another way. The system got to state i at stage m+ 1 through some other state (say state j)

at stage m. The number of times it was in state j at that stage is (approximately) s
(m)
j N, so the number of

times it got to state i via state j is pi j(s
(m)
j N). Summing over j gives the number of times the system is in

state i (at stage m+1). This is the number we calculated before, so

s
(m+1)
i N = pi1s

(m)
1 N + pi2s

(m)
2 N + · · ·+ pins

(m)
n N

Dividing by N gives s
(m+1)
i = pi1s

(m)
1 + pi2s

(m)
2 + · · ·+ pins

(m)
n for each i, and this can be expressed as the

matrix equation sm+1 = Psm.

If the initial probability vector s0 and the transition matrix P are given, Theorem 2.9.1 gives s1, s2, s3, . . . ,
one after the other, as follows:

s1 = Ps0

s2 = Ps1

s3 = Ps2
...
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Hence, the state vector sm is completely determined for each m = 0, 1, 2, . . . by P and s0.

Example 2.9.3

A wolf pack always hunts in one of three regions R1, R2, and R3. Its hunting habits are as follows:

1. If it hunts in some region one day, it is as likely as not to hunt there again the next day.

2. If it hunts in R1, it never hunts in R2 the next day.

3. If it hunts in R2 or R3, it is equally likely to hunt in each of the other regions the next day.

If the pack hunts in R1 on Monday, find the probability that it hunts there on Thursday.

Solution. The stages of this process are the successive days; the states are the three regions. The
transition matrix P is determined as follows (see the table): The first habit asserts that
p11 = p22 = p33 =

1
2 . Now column 1 displays what happens when the pack starts in R1: It never

goes to state 2, so p21 = 0 and, because the column must sum to 1, p31 =
1
2 . Column 2 describes

what happens if it starts in R2: p22 =
1
2 and p12 and p32 are equal (by habit 3), so p12 = p32 =

1
2

because the column sum must equal 1. Column 3 is filled in a similar way.

R1 R2 R3

R1
1
2

1
4

1
4

R2 0 1
2

1
4

R3
1
2

1
4

1
2

Now let Monday be the initial stage. Then s0 =




1
0
0


 because the pack hunts in R1 on that day.

Then s1, s2, and s3 describe Tuesday, Wednesday, and Thursday, respectively, and we compute
them using Theorem 2.9.1.

s1 = Ps0 =




1
2

0

1
2


 s2 = Ps1 =




3
8

1
8

4
8


 s3 = Ps2 =




11
32

6
32

15
32




Hence, the probability that the pack hunts in Region R1 on Thursday is 11
32 .
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Steady State Vector

Another phenomenon that was observed in Example 2.9.1 can be expressed in general terms. The state

vectors s0, s1, s2, . . . were calculated in that example and were found to “approach” s =

[
0.2
0.8

]
. This

means that the first component of sm becomes and remains very close to 0.2 as m becomes large, whereas
the second component gets close to 0.8 as m increases. When this is the case, we say that sm converges to
s. For large m, then, there is very little error in taking sm = s, so the long-term probability that the system
is in state 1 is 0.2, whereas the probability that it is in state 2 is 0.8. In Example 2.9.1, enough state vectors
were computed for the limiting vector s to be apparent. However, there is a better way to do this that works
in most cases.

Suppose P is the transition matrix of a Markov chain, and assume that the state vectors sm converge to
a limiting vector s. Then sm is very close to s for sufficiently large m, so sm+1 is also very close to s. Thus,
the equation sm+1 = Psm from Theorem 2.9.1 is closely approximated by

s = Ps

so it is not surprising that s should be a solution to this matrix equation. Moreover, it is easily solved
because it can be written as a system of homogeneous linear equations

(I−P)s = 0

with the entries of s as variables.

In Example 2.9.1, where P =

[
0 0.25
1 0.75

]
, the general solution to (I−P)s = 0 is s =

[
t

4t

]
, where t

is a parameter. But if we insist that the entries of S sum to 1 (as must be true of all state vectors), we find

t = 0.2 and so s =

[
0.2
0.8

]
as before.

All this is predicated on the existence of a limiting vector for the sequence of state vectors of the
Markov chain, and such a vector may not always exist. However, it does exist in one commonly occurring
situation. A stochastic matrix P is called regular if some power Pm of P has every entry greater than zero.

The matrix P =

[
0 0.25
1 0.75

]
of Example 2.9.1 is regular (in this case, each entry of P2 is positive), and

the general theorem is as follows:

Theorem 2.9.2

Let P be the transition matrix of a Markov chain and assume that P is regular. Then there is a
unique column matrix s satisfying the following conditions:

1. Ps = s.

2. The entries of s are positive and sum to 1.

Moreover, condition 1 can be written as

(I−P)s = 0
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and so gives a homogeneous system of linear equations for s. Finally, the sequence of state vectors
s0, s1, s2, . . . converges to s in the sense that if m is large enough, each entry of sm is closely
approximated by the corresponding entry of s.

This theorem will not be proved here.20

If P is the regular transition matrix of a Markov chain, the column s satisfying conditions 1 and 2 of
Theorem 2.9.2 is called the steady-state vector for the Markov chain. The entries of s are the long-term
probabilities that the chain will be in each of the various states.

Example 2.9.4

A man eats one of three soups—beef, chicken, and vegetable—each day. He never eats the same
soup two days in a row. If he eats beef soup on a certain day, he is equally likely to eat each of the
others the next day; if he does not eat beef soup, he is twice as likely to eat it the next day as the
alternative.

a. If he has beef soup one day, what is the probability that he has it again two days later?

b. What are the long-run probabilities that he eats each of the three soups?

Solution. The states here are B, C, and V , the three soups. The transition matrix P is given in the
table. (Recall that, for each state, the corresponding column lists the probabilities for the next
state.)

B C V

B 0 2
3

2
3

C 1
2 0 1

3

V 1
2

1
3 0

If he has beef soup initially, then the initial state vector is

s0 =




1
0
0




Then two days later the state vector is s2. If P is the transition matrix, then

s1 = Ps0 =
1
2




0
1
1


 , s2 = Ps1 =

1
6




4
1
1




so he eats beef soup two days later with probability 2
3 . This answers (a.) and also shows that he

eats chicken and vegetable soup each with probability 1
6 .

20The interested reader can find an elementary proof in J. Kemeny, H. Mirkil, J. Snell, and G. Thompson, Finite Mathematical

Structures (Englewood Cliffs, N.J.: Prentice-Hall, 1958).
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To find the long-run probabilities, we must find the steady-state vector s. Theorem 2.9.2 applies
because P is regular (P2 has positive entries), so s satisfies Ps = s. That is, (I−P)s = 0 where

I−P = 1
6




6 −4 −4
−3 6 −2
−3 −2 6




The solution is s =




4t

3t

3t


, where t is a parameter, and we use s =




0.4
0.3
0.3


 because the entries of

s must sum to 1. Hence, in the long run, he eats beef soup 40% of the time and eats chicken soup
and vegetable soup each 30% of the time.

Exercises for 2.9

Exercise 2.9.1 Which of the following stochastic matri-
ces is regular?




0 0 1
2

1 0 1
2

0 1 0


a.




1
2 0 1

3

1
4 1 1

3

1
4 0 1

3


b.

Exercise 2.9.2 In each case find the steady-state vector
and, assuming that it starts in state 1, find the probability
that it is in state 2 after 3 transitions.

[
0.5 0.3
0.5 0.7

]
a.




1
2 1

1
2 0


b.




0 1
2

1
4

1 0 1
4

0 1
2

1
2


c.




0.4 0.1 0.5
0.2 0.6 0.2
0.4 0.3 0.3


d.




0.8 0.0 0.2
0.1 0.6 0.1
0.1 0.4 0.7


e.




0.1 0.3 0.3
0.3 0.1 0.6
0.6 0.6 0.1


f.

Exercise 2.9.3 A fox hunts in three territories A, B, and
C. He never hunts in the same territory on two successive
days. If he hunts in A, then he hunts in C the next day. If
he hunts in B or C, he is twice as likely to hunt in A the
next day as in the other territory.

a. What proportion of his time does he spend in A, in
B, and in C?

b. If he hunts in A on Monday (C on Monday), what
is the probability that he will hunt in B on Thurs-
day?

Exercise 2.9.4 Assume that there are three social
classes—upper, middle, and lower—and that social mo-
bility behaves as follows:

1. Of the children of upper-class parents, 70% re-
main upper-class, whereas 10% become middle-
class and 20% become lower-class.

2. Of the children of middle-class parents, 80% re-
main middle-class, whereas the others are evenly
split between the upper class and the lower class.

3. For the children of lower-class parents, 60% re-
main lower-class, whereas 30% become middle-
class and 10% upper-class.

a. Find the probability that the grandchild of
lower-class parents becomes upper-class.

b. Find the long-term breakdown of society
into classes.



142 Matrix Algebra

Exercise 2.9.5 The prime minister says she will call
an election. This gossip is passed from person to person
with a probability p 6= 0 that the information is passed in-
correctly at any stage. Assume that when a person hears
the gossip he or she passes it to one person who does not
know. Find the long-term probability that a person will
hear that there is going to be an election.

Exercise 2.9.6 John makes it to work on time one Mon-
day out of four. On other work days his behaviour is as
follows: If he is late one day, he is twice as likely to come
to work on time the next day as to be late. If he is on time
one day, he is as likely to be late as not the next day. Find
the probability of his being late and that of his being on
time Wednesdays.

Exercise 2.9.7 Suppose you have 1¢ and match coins
with a friend. At each match you either win or lose 1¢
with equal probability. If you go broke or ever get 4¢,
you quit. Assume your friend never quits. If the states
are 0, 1, 2, 3, and 4 representing your wealth, show that
the corresponding transition matrix P is not regular. Find
the probability that you will go broke after 3 matches.

Exercise 2.9.8 A mouse is put into a maze of compart-
ments, as in the diagram. Assume that he always leaves
any compartment he enters and that he is equally likely
to take any tunnel entry.

1

2

3

4

5

a. If he starts in compartment 1, find the probability
that he is in compartment 1 again after 3 moves.

b. Find the compartment in which he spends most of
his time if he is left for a long time.

Exercise 2.9.9 If a stochastic matrix has a 1 on its main
diagonal, show that it cannot be regular. Assume it is not
1×1.

Exercise 2.9.10 If sm is the stage-m state vector for a
Markov chain, show that sm+k = Pksm holds for all m≥ 1
and k ≥ 1 (where P is the transition matrix).

Exercise 2.9.11 A stochastic matrix is doubly stochas-

tic if all the row sums also equal 1. Find the steady-state
vector for a doubly stochastic matrix.

Exercise 2.9.12 Consider the 2×2 stochastic matrix

P =

[
1− p q

p 1−q

]
,

where 0 < p < 1 and 0 < q < 1.

a. Show that 1
p+q

[
q

p

]
is the steady-state vector for

P.

b. Show that Pm converges to the matrix

1
p+q

[
q q

p p

]
by first verifying inductively that

Pm = 1
p+q

[
q q

p p

]
+ (1−p−q)m

p+q

[
p −q

−p q

]
for

m = 1, 2, . . . . (It can be shown that the sequence
of powers P, P2, P3, . . . of any regular transi-
tion matrix converges to the matrix each of whose
columns equals the steady-state vector for P.)
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Supplementary Exercises for Chapter 2

Exercise 2.1 Solve for the matrix X if:

PXQ = R;a. XP = S;b.

where P =




1 0
2 −1
0 3


, Q =

[
1 1 −1
2 0 3

]
,

R =



−1 1 −4
−4 0 −6

6 6 −6


, S =

[
1 6
3 1

]

Exercise 2.2 Consider

p(X) = X3−5X2 +11X −4I.

a. If p(U) =

[
1 3
−1 0

]
compute p(UT ).

b. If p(U) = 0 where U is n×n, find U−1 in terms of
U .

Exercise 2.3 Show that, if a (possibly nonhomoge-
neous) system of equations is consistent and has more
variables than equations, then it must have infinitely
many solutions. [Hint: Use Theorem 2.2.2 and Theo-
rem 1.3.1.]

Exercise 2.4 Assume that a system Ax = b of linear
equations has at least two distinct solutions y and z.

a. Show that xk = y+ k(y− z) is a solution for every
k.

b. Show that xk = xm implies k = m. [Hint: See Ex-
ample 2.1.7.]

c. Deduce that Ax = b has infinitely many solutions.

Exercise 2.5

a. Let A be a 3×3 matrix with all entries on and be-
low the main diagonal zero. Show that A3 = 0.

b. Generalize to the n× n case and prove your an-
swer.

Exercise 2.6 Let Ipq denote the n×n matrix with (p, q)-
entry equal to 1 and all other entries 0. Show that:

a. In = I11 + I22 + · · ·+ Inn.

b. IpqIrs =

{
Ips if q = r

0 if q 6= r
.

c. If A = [ai j] is n×n, then A = ∑n
i=1 ∑n

j=1 ai jIi j.

d. If A= [ai j], then IpqAIrs = aqrIps for all p, q, r, and
s.

Exercise 2.7 A matrix of the form aIn, where a is a
number, is called an n×n scalar matrix.

a. Show that each n×n scalar matrix commutes with
every n×n matrix.

b. Show that A is a scalar matrix if it commutes with
every n× n matrix. [Hint: See part (d.) of Exer-
cise 2.6.]

Exercise 2.8 Let M =

[
A B

C D

]
, where A, B, C, and

D are all n×n and each commutes with all the others. If
M2 = 0, show that (A+D)3 = 0. [Hint: First show that
A2 =−BC = D2 and that

B(A+D) = 0 =C(A+D).]

Exercise 2.9 If A is 2× 2, show that A−1 = AT if and

only if A =

[
cosθ sinθ

−sinθ cosθ

]
for some θ or

A =

[
cosθ sin θ

sinθ −cosθ

]
for some θ .

[Hint: If a2 + b2 = 1, then a = cos θ , b = sinθ for
some θ . Use

cos(θ −φ) = cosθ cosφ + sinθ sinφ .]

Exercise 2.10

a. If A =

[
0 1
1 0

]
, show that A2 = I.

b. What is wrong with the following argument? If
A2 = I, then A2− I = 0, so (A− I)(A + I) = 0,
whence A = I or A =−I.


